Skip to main content
版本: 0.11

简介

本篇指南向你展示,如何使用 KCL 语言与其相对应的 CLI 工具,完成一个运行在 Kubernetes 中的 Long-Running 应用的部署,我们将组织配置的单位叫做应用(Application),描述应用部署和运维细节的配置集合叫做应用服务(Server),它本质上是通过 KCL 定义的运维模型。

要将一个运行在 Kubernetes 中的应用完全部署起来,一般需要下发多个 Kubernetes 资源,本次演示的样例涉及以下 Kubernetes 资源:

  • 命名空间(Namespace)
  • 无状态工作负载(Deployment)
  • 服务(Service)

不清楚相关概念的,可以前往 Kubernetes 官方网站,查看相关说明:

准备工作

在开始之前,我们需要做以下准备工作:

  1. 安装 kcl

  2. 下载开源 Konfig 库,仓库地址: https://github.com/kcl-lang/konfig.git

git clone https://github.com/kcl-lang/konfig.git && cd konfig

快速开始

1. 配置编译

Konfig 的编程语言是 KCL,不是 Kubernetes 认识的 JSON/YAML,因此还需要编译得到最终输出。

进入到项目的 Stack 目录(examples/appops/nginx-example/dev)并执行编译:

cd examples/appops/nginx-example/dev && kcl run

可以获得如下 YAML 输出:

apiVersion: apps/v1
kind: Deployment
metadata:
name: sampleappdev
namespace: sampleapp
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: sampleapp
app.kubernetes.io/env: dev
app.kubernetes.io/instance: sampleapp-dev
app.k8s.io/component: sampleappdev
template:
metadata:
labels:
app.kubernetes.io/name: sampleapp
app.kubernetes.io/env: dev
app.kubernetes.io/instance: sampleapp-dev
app.k8s.io/component: sampleappdev
spec:
containers:
- env:
- name: MY_ENV
value: MY_VALUE
image: nginx:1.7.8
name: main
ports:
- containerPort: 80
protocol: TCP
resources:
limits:
cpu: "100m"
memory: "100Mi"
ephemeral-storage: "1Gi"
requests:
cpu: "100m"
memory: "100Mi"
ephemeral-storage: "1Gi"
volumeMounts: []
---
apiVersion: v1
kind: Namespace
metadata:
name: sampleapp
---
apiVersion: v1
kind: Service
metadata:
name: nginx
namespace: sampleapp
spec:
ports:
- nodePort: 30201
port: 80
targetPort: 80
selector:
app.kubernetes.io/name: sampleapp
app.kubernetes.io/env: dev
app.kubernetes.io/instance: sampleapp-dev
app.k8s.io/component: sampleappdev
type: NodePort
---
apiVersion: v1
kind: Namespace
metadata:
name: sampleapp
---
apiVersion: v1
kind: Service
metadata:
name: nginx
namespace: sampleapp
spec:
ports:
- nodePort: 30201
port: 80
targetPort: 80
selector:
app.kubernetes.io/name: sampleapp
app.kubernetes.io/env: prod
app.kubernetes.io/instance: sampleapp-prod
app.k8s.io/component: sampleappprod
type: NodePort

完成编译,可以看到 3 个资源:

  • 一个 name 为 sampleappprodDeployment
  • 一个 name 为 sampleappNamespace
  • 一个 name 为 nginxService

2. 配置修改

Server 模型中的 image 属性用于声明应用的业务容器镜像,我们可以修改 base/main.k 中的 image 的值进行镜像修改或升级:

14c14
< image = "nginx:1.7.8"
---
> image = "nginx:latest"

重新编译配置代码可以获得修改后的 YAML 输出:

kcl run -D env=dev
apiVersion: apps/v1
kind: Deployment
metadata:
name: sampleappdev
namespace: sampleapp
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: sampleapp
app.kubernetes.io/env: dev
app.kubernetes.io/instance: sampleapp-dev
app.k8s.io/component: sampleappdev
template:
metadata:
labels:
app.kubernetes.io/name: sampleapp
app.kubernetes.io/env: dev
app.kubernetes.io/instance: sampleapp-dev
app.k8s.io/component: sampleappdev
spec:
containers:
- env:
- name: MY_ENV
value: MY_VALUE
image: nginx:latest
name: main
ports:
- containerPort: 80
protocol: TCP
resources:
limits:
cpu: "100m"
memory: "100Mi"
ephemeral-storage: "1Gi"
requests:
cpu: "100m"
memory: "100Mi"
ephemeral-storage: "1Gi"
volumeMounts: []
---
apiVersion: v1
kind: Namespace
metadata:
name: sampleapp
---
apiVersion: v1
kind: Service
metadata:
name: nginx
namespace: sampleapp
spec:
ports:
- nodePort: 30201
port: 80
targetPort: 80
selector:
app.kubernetes.io/name: sampleapp
app.kubernetes.io/env: dev
app.kubernetes.io/instance: sampleapp-dev
app.k8s.io/component: sampleappdev

资源

  • 更多用例可以在这里找到
  • 更多参考文档可以在这里找到

小结

本文主要介绍了如何使用 KCL 语言与其相对应的 Konfig 库,完成一个运行在 Kubernetes 中的 Long-Running 服务应用的部署。