
KCL: A Declarative Language for Large-scale 
Configuration and Policy Management

Xiaodong Duo, Pengfei Xu, Zheng Zhang, Shushan Chai, Rui Xia and Zhe Zong

AntGroup

October 28, 2022



Agenda

01 Background

02 Design

03 Workflow

04 Evaluation



Background

01



Background

Stability Scalability Efficiency

Configurations and Policies are important and crucial

Time Event

2021.07 The Bilibili website in China went down because SLB Lua configuration code fell into an 
infinite loop with calculation errors

2021.10 KT Company in South Korea suffers major network interruption nationwide due to wrong 
routing configuration

1



Why Design KCL

Structured KV Templated KV Programmable
KV Typed KV Modeled KV

Growing importance of modeling, constraint and scalability

Pros.

• Easy to write and read

• Rich multi-language API

• Various Path Tools

Cons.

• Redundant information

• Insufficient functionality e.g.

abstraction, constraint, …

Tech.

• JSON

• YAML

Product

• Kustomize

• …

Pros.

• Simple config logic support

• Dynamic argument input

Cons.

• Increase of argument makes 

it difficult to maintain

• Insufficient functionality e.g.

abstraction, constraint, …

Tech.

• Velocity

• Go Template

Product

• Helm

• …

Pros.

• Required programming features

• Code modularity

• Templates & Data abstraction

Cons.

• Insufficient type constraints

• Insufficient restraint ability

• Runtime error

Tech.

• GCL

• HCL

• JSONNET

• …

Product

• Terraform

• …

Pros.

• Rich config constraint syntax

• Unified type & value constraint 

• Configuration conflict checking

Cons.

• Difficult to configuration 

override for multi-environment 

scenarios

• Runtime checks and limited 

performance

Tech.

• CUE

• …

Product

• KubeVela

• …

Pros.

• Model-centric & constraint-centric

• Scalability on separated block 

writing with rich merge strategies

• Static type system & analysis

• High Performance

Cons.

• Expansion of different models 

requires investment in R&D

Tech.

• KCL

• …

Product

• KusionStack

• …
2



Contribution

• Proposing the KCL declarative language, development mechanism, and consistent workflow
to improve the large-scale efficiency and liberate multi-team collaborative productivity of
operational development and operation systematically while ensuring stability for large-scale
configuration and policy management.

• To date, the KCL has been used in more than 800 projects, and the average configuration writing
and distributing time is shortened from more than 25 days to 2 days.

3

Declarative 
Language

Development 
Mechanism

Consistent 
Workflow



Design

02



Overview
KCL is an open source constraint-based record & functional language mainly used in configuration and policy scenarios

https://github.com/KusionStack/KCLVM 4

Config

Definition
Description

LambdaSchema

Rule

Organize

Validation

Combination



Grammar

5

Core Pattern 



Type

6

Well-formed type 



Unify

a : A { … }

a : A { … }

Unfold

Unfold

Schema A

Schema C

Schema B

User A

User B

1

2

3

x: c.x or 1

b: B

x: int | str

y: {str: int}

c: C

Substitution

ü DAG Model

ü Irrelevant Order

Dependency

Data

Attribute

Schema

Compilation

7



Configuration Substitution

8

1. Traverse all the key k and expression e of the
input configuration Ci, and use the lookup function
to substitute its dependent value recursively.

2. Store the calculated value in the output
configuration and cache, which is used to avoid
multiple calculations.

3. When all the key calculations are completed, we 
get the substitution completed configuration Co.

Main Steps



Configuration Merge

9

Pattern 

Merge 

Result



Configuration Properties

10

Properties



Configuration Properties

11



Example

• base.k

• prod.k

Equivalent code

12



kcl -O appConfiguration.image='"nginx:1.7.9"'

Automation

13



Modules

meta

GPLs

14



Workflow

03



Workflow

15



Evaluation

04



Related Works

16



Key Results

17



Key Results

Average 
configuration writing 

and shipping time

25 days –
2 days

KCL
Compilations

10 K/day
KCL
Code

~600 K
PRs

~18 K

https://kusionstack.io/blog/2022-sense-of-open-day 18

Projects

800



Future Work

19

Policy

Automati
on

Security

• We will better support policy capabilities such as logic writing and
data query to satisfy scenarios such as service authentication.

• We will provide a more complete KCL tool-set including create,
query and update to meet more automation scenarios.

• We will improve language security through static model checking
and theorem proving and let more problems be exposed to compile
time as much as possible.



Summary

20

• We proposed the KCL declarative language, which is an open source constraint-
based record & functional language mainly used in configuration and policy
scenarios.

• In KCL, we are making special design including modeling, constraint and
workflow for the stability and scalability of configuration, including
configuration graph unification and carrying multiple configuration merging
strategies.

• To date, the KCL has been used in more than 800 projects, and the average
configuration writing and distributing time is shortened from more than 25 days
to 2 days. We have demonstrated the feasibility of our contribution through a
large number of code practices and achievements.

https://github.com/KusionStack/KCLVM




